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COMPUTATIONAL MODELING OF AGE-DIFFERENCES IN A VISUALLY DEMANDING 

DRIVING TASK: VEHICLE DETECTION. 

ABSTRACT 

While older adults experience fewer automobile accidents than the rest of the population, 

their crash rate per mile driven parallels that of new drivers. Many accidents can be linked to 

visual detection problems, e.g. , not seeing a car approaching at an intersection. The visual task 

of detecting an approaching vehicle was modeled with a neuro-physiologically motivated 

computational simulation of early vision, the National Automotive Center- Visual Perception 

Model (NAC-VPM). The scientific literature documenting age-related changes in early vision 

was reviewed in relationship to the components of the N AC-VPM, and the model was fit to lab 

data from older observers. The model fit the older observers' data adequately, particularly when 

the data was partitioned into subsets based on viewing conditions. Model fits were compared to 

calibrations based on younger observers' data. The calibrations based on older observers were 

substantially different from calibrations based on younger observers, indicating that the model 

can capture age-related differences in visual perception. When calibrated to the older adults' 

data, the model successfully predicted conditions under which vehicle detection was particularly 

difficult for older adults. 
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COMPUTATIONAL MODELING OF AGE-DIFFERENCES IN A VISUALLY DEMANDING 

DRIVING TASK: VEHICLE DETECTION. 

INTRODUCTION 

Older Drivers 

Approximately 13% of the driving population is over the age of 65. While the older 

segment of the driving population travels fewer miles and has fewer drivers involved in crashes, 

the risk per-mile-driven parallels that of teen drivers [20] . Even more troubling is that older 

drivers are more fragile than their younger counterparts. When measured in terms of fatalities 

per year per driver, older drivers are at approximately the same risk of death as the rest of the 

population. However, when measured per mile driven, the older population has a much greater 

risk of dying: Compared to 20 year-olds, drivers 75 and older are 3 times as likely to die in a 

given crash [20]. 

Most crashes occur at intersections, across all age groups. The proportion of crashes 

which occur at intersections, however, are highest for older drivers. Approximately 60% of older 

drivers' accidents are involved directly with an intersection [20] . Patterns of driver error are 

different across age groups as well. Older adults are less likely to be involved in an accident 

where excessive speed is to blame, however, they fail to yield right-of-way at twice the rate of 

younger drivers (18%, compared to 9%; [20]) .  Older drivers also have almost twice the rate of 

errors at signed or signalized intersections (14% vs. 9% of younger drivers; [20]) .  Self-reports 

indicate that older drivers consider these driving situations difficult, particularly among females 

and for drivers over the age of 75 [3]. 
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The epidemiological statistics cited above have led researchers to ask the question, "Why 

do older drivers get in accidents?" Various hypotheses have been proposed to understand aspects 

of this phenomenon, including changes in risk perception [23] and declines in psychomotor 

ability (e.g. , reaction time; [15]) .  In addition to these factors, the National Highway Traffic 

Safety Administration has made investigation of the role of vision in driving a research priority 

[20] . Researchers have estimated that the vast majority (as much as 90%), of the total input to a 

driver is visual [1, 8] , and these demanding visual requirements have direct performance 

implications for older drivers. In a survey of 341 older adults, vision problems were reported to 

make driving difficult, particularly for drivers over the age of 75 [3]. Other researchers have 

noted the potential of visual perception as a predictor of older drivers' performance [ 17, 19, 21 ] .  

In a prospective study of crash involvement, Ball et al. [2] , evaluated various measures of vision 

and visual information processing and found all of them superior to age as a predictor of 

accidents. The objective of this investigation was to use a computational model of early visual 

perception, the National Automotive Center-Visual Perception Model (NAC-VPM), to 

predict age-differences in a vehicle detection task. In the next section, the literature regarding 

age and vision is reviewed, drawing out the age-related changes which the NAC-VPM is 

equipped to accommodate. 

Age-Related Changes in the Basic Properties of Vision 

There are age-related changes in physiology and neurophysiology of the eye which impact 

all visual performance, including driving. Kline and Scialfa [10, 11] recently reviewed the 

literature, noting age-related changes in the cornea, aqueous humor, iris and pupil, lens, and 

vitreous humor. There is also evidence of photoreceptor cell loss, particularly in the parafoveal 

region [11] . Aging causes decreased retinal illumination and increased light scatter [22] . These 
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two factors along with deficits in photo-pigmentation and the visual neural pathways, are 

responsible for a decreased light sensitivity among older adults, on the order of .09 log units per 

decade of life [ 1 0]. 

Contrast sensitivity reaches its maximum in early adulthood. Although the variability in 

contrast sensitivity loss increases with age, the overall trend is steady decline [ 4, 16, 22]. For 70 

year-olds to perform as well as 20 year-olds, therefore, the task contrast must be 1.7 to 2.4 times 

greater [4]. Aspects of spatial vision, linked to basic contrast sensitivity, also decline with age 

[18]. The contrast sensitivity function (CSF) is a clinical measure of an observer's ability to 

detect sinusoidal gratings at different spatial frequencies, measured in cycles per degree of visual 

angle ( c/deg). The contrast between the lightest and darkest portions of the grating specify the 

contrast, and the contrast required for detection varies with the grating's spatial frequency. 

Sekuler and Owsley [ 18] tested 100 observers across the adult life span. They found that for low 

spatial frequencies (.5-1.0 c/deg), all ages performed equally well. However, at higher spatial 

frequencies (starting at about 4 c/deg) the performance of older adults began to drop relative to 

their younger counterparts. Further, the spatial frequency which produced peak sensitivity 

dropped from 4 c/deg in 20 year-olds to 2 c/deg in 60 year-olds. Similar findings from other 

research are summarized in Kline and Scialfa [11]. 

Aging also brings declines in motion sensitivity. As with contrast sensitivity, the age 

differences in temporal resolution vary with spatial frequency characteristics of the target. For 

low spatial frequencies there is no evidence for age-effects, however, as spatial frequency 

increases, temporal resolution declines markedly [10]. However, many of the laboratory studies 

investigating the age-related decline in motion sensitivity do not address the extent to which 

older adults are disadvantaged under more ecologically valid circumstances. Some studies 



MODELING VEHICLE DETECTION -- 6 

investigating the ability of older adults to judge the speed of an approaching vehicle have shown 

that older adults perform as well as younger adults [11] . 

Compared to other aspects of vision, color discrimination is fairly stable with age, 

although there is still some decline in sensitivity. In particular, older adults have exhibited errors 

on the blue/yellow axis of the Farsworth/Munsell 100 Hue Test, and the blue/green 

discrimination of the Lanthony New Color Test [10] . Evidence suggests that there are both 

optical components (e.g., changes in the light absorbing characteristics of the lens and cornea) 

and neural components (e.g. , changes in photo-pigment density) in this decline. 

Modeling the Role of Aging and Vision in Driving: Vehicle Detection 

Recent advances have been made in computational modeling of object detectability in 

naturalistic scenes. The NAC-VPM was developed at the US Army Tank-automotive and 

Armaments Command (T ACOM) to analyze detectability according to the mechanisms of visual 

perception. The NAC-VPM has been used extensively by the military to model data across a 

wide range of signature and visibility conditions. The NAC-VPM simulates the operation of the 

"early" stages of visual processing, from the retinal image to the neural receptive field (RF) 

response. The model uses the output of these stages as inputs to a statistical decision model 

calibrated to task performance. 

The model computes a target metric and predicts the detectability, d', for an 

experimenter-designated region in a given image. The model also produces "images" of the 

neural receptive field response over the image, by (1) spatial frequency channel, (2) temporal 

channel, and (3) luminance/color opponent channel. The d' measure is a standard 

psychophysical measure of signal detectability, independent of the observer's response bias. The 
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target metric is a measure of how much information is available for subsequent observer decision 

making and response selection across all three channels in the region of the target. The current 

model does not predict search behavior or performance. 

Color processing. Prior to simulating human color vision, the model converts the digital 

RGB images into standard XYZ color coordinates. Color vision is modeled as a two-stage 

process: first the image is processed by cones with short, medium, and long (SML) spectral 

sensitivity [5], followed by luminance and color-opponent receptive fields. At the present time 

both of these transformations are represented by simple 3-by-3 linear coordinate transformations 

from XYZ to SML, then from SML to luminance/color-opponent channels, subsequently denoted 

by black-white [BW], red-green [RG] and yellow-blue [YB]. 

Temporal filtering. The model simulates the retinal temporal response using three 

temporal filters: one lowpass and two bandpass after Mandler and Makous [14] . The parameters 

of the temporal filtering module were fit to temporal contrast sensitivity data from Kelly 

reprinted in De Valois and De Valois [6]. Current theory proposes that the visual system 

processes the time stream of imagery on the retina by sampling and then temporally filtering the 

images with lowpass and bandpass filters [6]. Sampling is punctuated by saccadic eye 

movements, which occur at intervals from 0. 125 to 0.5 seconds. Temporal filtering occurs via 

the differential rates of adaptation by the transient response neural receptive field cells. 

Subsequently, color processing employs both the temporal lowpass and bandpass components 

[6]. Mandler and Makous [14] modeled this processing with a lowpass filter and two bandpass 

filters: (1) the lowpass filter has a 50% response cutoff at 8 Hz; (2) the mid-frequency bandpass 

filter has lower and upper 50% response points at 2 Hz and 15 Hz, respectively, and is centered 

at their approximate geometric mean (5.5 Hz); (3) the high-frequency bandpass filter has lower 
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and upper 50% response points at 5 Hz and 30 Hz and is centered at their approximate geometric 

mean (12 Hz). 

Following Mandler and Makous, the NAC-VPM also uses a lowpass and two bandpass 

filters. The input values of the temporal filters were obtained by fitting the model' s cumulative 

response to the aggregate contrast sensitivity data from Kelly [9]. The NAC-VPM samples 

images within a window containing the experimenter-selected point in time to perform the 

temporal filtering. Three images result from the filtering of one image sequence: a lowpass 

image and two bandpass images. 

Spatial Filtering. The NAC-VPM implements spatial filtering with a multi-resolution 

bandpass filter. Multi-resolution bandpass filtering is described in Landy and Movshon [12]. 

The NAC-VPM uses a sequence of spatial filters at one octave spacing between central 

frequencies and one-octave half-power full-bandwidth. The spacing between the central 

frequencies of the filters is prescribed by 4: 1 subsampling. The bandwidth of the filters is 

governed by the convolution kernel: the kernel for multi-resolution spatial filtering is a 3-by-3 

approximation to a radially symmetric bi-variate Gaussian. It produces unoriented "circular 

annulus" bandpass filtering. 

Non-linear Receptive Field (RF) Response. The nonlinear RF response of the NAC­

VPM is similar to that described by Landy and Movshon [12]. The NAC-VPM formulation 

normalizes the spatial bandpass output to the local average luminance (i.e., it divides the contrast 

by the luminance to derive the contrast ratio). The local average luminance is computed by 

applying a lowpass spatial filter to the temporal lowpass luminance image, adding a constant bias 

representing the "dark current" in the visual system, then applying multi-resolution lowpass 
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filtering. The same luminance normalization Gaussian pyramid is used for all of the 

temporal/color channels. 

NAC-VPM uses curves fit to contrast threshold data reprinted in De Valois and De Valois 

[6]. Meaningful contrast threshold data are available only for spatial frequencies from 0.25 c/deg 

to 32 c/deg. Since there is no human contrast threshold data to compare to outside this range, the 

accuracy of the NAC-VPM contrast threshold functions below 0.25 c/deg or above 32 c/deg is 

difficult to confirm. 

The NAC-VPM computes the energy envelope of the contrast ratio spatial modulation. In 

the multi-resolution representation, squaring the contrast ratio yields the energy envelope (the 

multi-resolution subsampling scheme takes samples only where the imaginary frequency 

component of the frequency-domain representation is equal to zero). The energy envelope at 

each location is then normalized to the sum of the internal noise energy plus the local average 

energy. The internal noise energy is the square of the product of a gain parameter and a contrast 

threshold for each spatial frequency, temporal, and luminance/color-opponent channel. 

The normalized energy is computed for the entire scene on all spatial, temporal and 

luminance/color-opponent channels. This normalized energy is the predicted RF response. The 

luminance normalization pyramid and the energy normalization pyramids are also stored for use 

later to compute the target' s contribution to RF response. 

Target Contribution to RF Response. On each spatial frequency, temporal and 

luminance/color-opponent channel, the NAC-VPM model computes the modulation due to the 

target by subtracting the local contrast ratio bias due to the background from the local contrast 

ratio for the original image. 



MODELING VEHICLE DETECTION-- 10 

An algorithm was developed and implemented using non-stationary multi-resolution 

spatial filtering to extrapolate the surrounding RBG pixel values into the target region. This 

procedure creates an image such that the content of target region does not add modulation to the 

image. On each multi-resolution plane, the algorithm replaces the modulation of the target 

region with the modulation induced solely by the surrounding scene, without using any target 

region image information. The contrast modulation from the target region is minimized in the 

sense that the apparent contrast modulation in the image is the same as if the observer' s visual 

receptive fields were surgically modified so that they received no input from the target region. 

The "background extrapolation" image serves as a baseline for determining the image 

modulation in the image due to contrasts created by the target. The contrast modulation in the 

target region of the "background extrapolation" is that induced by the surrounding scene, and the 

surrounding scene is identical to that of the original image Therefore, the contrast modulation 

on each visual channel due to the target is simply the difference in the multi-resolution spatial 

filter pyramids of the original (i.e. , target present) and "background extrapolation" (i.e., target 

absent) images. 

Aggregate Target Metric and P redicted Detectability. The target metric is the sum of the 

target contribution to RF detectability over the temporal and luminance/color-opponent channels 

of the spatial integrals. The target metric is a measure of the total RF response over all channels 

due to the target. The target detectability is computed as a linear function of the logarithm of the 

target metric. The logarithmic transformation is a common information-theoretic transformation 

[13]. The slope and intercept of the linear function are the task performance calibration 

parameters, and are estimated by linear regression of measured d' against the logarithm of the 

computed target metric. 
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This calibration approach assumes that the performance of the each visual subsystems, 

relative to each of the other subsystems does not vary significantly across tasks or individuals. 

The calibration is made at the system-level of model performance, rather than at the subsystem 

level. An adequate fit of the model to data generated from older observers would indicate that 

even when the visual system declines, the relative performance of various aspects of processing 

does not change. 

Experimental Overview 

The experimental task used the following scenario: The observer's vehicle was stopped 

at a four way intersection. Cross-traffic at this intersection did not stop. The task was to look in 

each direction, determine if there was a car coming from either (or both) directions, and make the 

appropriate response. In addition to intersections with stop signs, this scenario is similar to any 

location where the driver must stop, look and proceed if the way is clear. 

Recall that intersection scenarios are disproportionately dangerous for older adults in 

terms of crash statistics, and that older drivers report high levels of difficulty with intersections 

compared to other driving situations. Given that age-related declines in vision are suspected to 

play a role in this phenomenon, the NAC-VPM was used to examine the performance of older 

drivers in this scenario. 

The experiment was designed to investigate the effect of various scene and vehicle 

characteristics on the detectability of approaching vehicles at intersections, specifically among 

older drivers. Both a statistical model of detection performance and a calibration of the NAC­

VPM were computed. Data for older observers were compared with results from an identical 

experiment conducted earlier with drivers aged 25-45 [24]. 
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METHODS 

Stimuli and Apparatus 

Experimental control and data acquisition was accomplished with a Lab VIEW virtual 

instrument running on an IBM-compatible PC. Inputs to the experimental control virtual 

instrument (ECVI) included stimulus information from a multimedia control computer (a 

Macintosh Quadra 950), participant-initiated experimental pacing information, and participant 

response information. Outputs from the ECVI included experimenter-initiated pacing 

information to the participant and instructions to the multimedia control computer. Stimuli were 

short video sequences staged and recorded at actual intersections, and presented with high­

resolution thin-film-transistor LCD projectors using RGB input from laserdisk players. The 

imagery was rear-projected onto screens to the left, front, and right of the experimental 

participants. The entire display subtended a total of subtending a total of 184 degrees (wide) by 

30 degrees (tall) of visual angle at a viewing distance of 2 meters. The front half of an 

automobile, or "car buck" was used as the participants' observation station 

Participant input and response took place through two routes. First, a magnetic head 

tracker (MHT) provided real-time angular measurement of point-of-regard. Other participant­

initiated input to the control computer's virtual instrument came from a custom-wired response 

pad. The configuration for the response pad included buttons for "target present," "unsure," and 

"target absent." 

The stimuli were recorded with a SVHS camcorder at intersections of surface roads in 

rural Michigan. The camera was placed at the head position of a nominal driver stopped at the 

intersection. In all conditions the 0-degree (forward) orientation of the camera was due north. 
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The camera was leveled and then aimed at 76 degrees from the forward axis in both directions. 

There were three locations used for recording stimuli, referred to here as A, B, and C. Location 

A was a clear, open grassy area. Location B had some buildings and farm-equipment in the 

background. For locations A and B, scenes were recorded under clear morning (9:00 AM to 

12:00 PM DST), clear afternoon (2:00 to 5:00 DST), and under overcast conditions in each 

direction. The combination of the sun's position in the sky and the direction being recorded 

allowed the AM and PM conditions to be recoded as "frontlit" (AM-left, PM-right) and "backlit" 

(AM-right, PM-left). Location C was a wooded area. For location C, the thick tree canopy 

created a "dappled" lighting effect on the road surface, and the images were all recorded within 

120 minutes of solar noon under mostly sunny conditions. This combination produced fourteen 

combinations of background scene characteristics. There was no extraneous traffic in any of the 

recorded scenes. Under each combination of background characteristics, both target-absent and 

target-present scenes were recorded. For the target-present scenes three different vehicles were 

used: (1) a large black car; (2) a large white car; and (3) a small white car. Each of these cars 

made approaches to the intersection from each direction under four combinations of two factors: 

( l )  with head lamps on and off; and (2) near and far. 

Fourteen left-screen and right-screen images were randomly paired without replacement 

within each sky condition (representing each of the target characteristic cells and two 

corresponding no-target images), with the additional constraint that left- and right-screen images 

came from the same location. A total of four blocks of 56 images each were replicated in this 

manner. Each of these 4 blocks were then presented from left-to-right under the three different 

lab viewing conditions- unattenuated, neutral density filtered (reduced luminance), and filtered 

with back lighting (attenuated luminance and contrast). The random pairings were maintained, 
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while presentation order was reversed for right-to-left displays. The four blocks of images were 

transferred from tape to laser compact disk for presentation through the laserdisk players. 

Participants observed the stimulus imagery from the car buck. Adaptive and unobtrusive 

control of experimental pace was accomplished with the MHT: the participants turned their 

heads from side to side in a natural manner, activating a "switch" in the ECVI. The participants' 

response pad was integrated into the car buck's steering wheel. There were six response buttons 

in the response pad configuration. For both the left and the right side of a given experimental 

trial, the participants were able to respond, "Yes" (target present), "Not Sure," and "No" (no 

target present). 

Participants 

A total of 1 1  individuals were recruited from the general population, and were paid $150 

for their participation. Participants were given a Snellen eye chart acuity screening and an 

Ishihara Color test to screen for any vision deficiencies. Participants were between the ages of 45 

and 69, had a current driver's license, were high school graduates, and reported themselves as "in 

good health." Further, potential participants were screened out if they were commercial drivers, 

had three or more points on their license in the last five years, or if they were taking medication. 

Data for the comparison group of younger drivers, aged 25-35, was taken from an identical 

earlier experiment. There were 32 younger drivers, each of whom passed the same screening 

procedure. 

Procedure 

Following the screening test the subjects were shown a four-minute training tape which 

detailed the experimental protocol. Following the tape, each subject was provided with a 10-

minute training session in the car buck. The experiment's average length was about three hours. 
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To avoid fatigue, each participant was provided with a break every 40 minutes and upon request 

during the experiment. After the presentation of a stimulus image, blue background was 

presented to reduce the possibility of eye strain during the test. 

The presentation of the stimuli was arranged into four replicate imagery blocks. The 

presentation blocks corresponded to the three lab-manipulated lighting conditions. Each block of 

trials repeated the same sequence of intersection images. The duration of the video on the right 

and left screens in each trial was 240 ms (8 frames of video). A beep generated by the ECVI 

notified the participant to initiate a new trial. Trials were initiated via the MHT when the 

participant's head turned toward one of the projection screens. After participants looked in each 

direction and decided whether or not there was an approaching vehicle, they responded for each 

side with the response buttons on the steering wheel. Participants were instructed to be sure of 

their answers before responding, emphasizing accuracy over speed. Accuracy and its derivatives 

were the dependent measures used in all analyses. 

Treatment of Data 

The participant's responses were aggregated into a truth table by pairing the responses 

from each unique target present scene with the responses from corresponding target-absent 

backgrounds. These truth tables were used to calculate hit (Phit) and false alarm (Pra) rates for the 

observer population. By collapsing the uncertain responses into the "target present" responses 

for one analysis, and collapsing uncertain responses into target absent responses for a second 

analysis, we were able to calculate hit and false alarm rates at two response criterion levels (sure 

and unsure). The hit and false alarm rates were used to calculate two values of d' for each scene 

(one for each response criterion level). The overall estimate of d' for each scene was calculated 

from the two levels using the method described in MacMillan and Creelman [13]. 
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RESULTS 

Statistical Main Effects Among Older Observers 

Initial analysis focused solely on the older drivers' data. Main effects were analyzed for 

the experimental factors among the older driver participant group using the General Linear 

Model (GLM) with SYSTAT 7.0. The older adults' detection sensitivities were significantly 

effected by Location [F(2, 886) = 6.235, p = .002] , Scene lighting [F(2, 886) = 54.198, p < .001], 

Car color [F(l ,  886) = 14.403, p < .001] , Distance [F(1, 886) = 130.889, p < .001] , and 

Luminance/ Contrast attenuation [F(2, 886) = 145.032, p < .001]. Overall the linear model of 

the main effects of these factors on older drivers' detection sensitivity (d') fit well, with a 

multiple R = 0.728. The average d' for older observers was 2.59, indicating good overall 

detection performance. The observers performed best at location B (mean d' = 3.01), not quite as 

well at location A (mean d' = 2.7), and worst at location C (mean d' = 1.31). 

Across the various levels of scene lighting, d' varied even more widely. Overcast 

viewing conditions created the most favorable conditions for detection (mean d' = 3.29), 

followed by back-lighting (mean d' = 2.66) and front-lighting (mean d' = 2.45). The dappled 

viewing conditions of location C brought the lowest performance (mean d' = 1.31 ). Lab 

manipulation of contrast and luminance was the final background characteristic analyzed: 

performance was best when the image was left unmanipulated (mean d' =3.14) and worst when 

luminance and contrast were attenuated (mean d' = 1.87). 

In addition to the effects of the various overall scene characteristics, target characteristics 

also played a role in performance. White vehicles were more detectable than black vehicles 

(mean d' = 2.69 vs. mean d' = 2.38, respectively). While car size did not have a significant main 
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effect with the GLM, any positive effect of size may have been attenuated by averaging the d' 

values for the large black car with the large white car. Comparing means, the large white car was 

more detectable (mean d' = 2.99) than the smaller white car (mean d' = 2.20). Using a two­

sample unequal variance t-test, the effect of car size was significant [t(472) = 7.192, p < .001]. 

For distance, vehicles which were farther away from the observer were more difficult to detect 

(mean d' = 2.1) compared to closer targets (mean d' = 3.08). 

Statistical Effects of Age Group and Age Interactions 

After analyzing the main effects of the experimental factors within the older observer 

group, the data were combined with that of 32 younger observers (aged 25-45). Once again, 

GLM was used to model the main effects for the combined data set. Additionally, the two-way 

interactions of experimental factors with Age group was modeled. 

Although main effect for Age group failed to meet significance, Location [F( 1, 1772) 

=15.5, p < .001] , Scene lighting [F(3, 1772) = 116.1, p < .001], Car color [F( l, 1772) = 26.424, 

p < . 001], Distance [F(l ,  1772) = 325.520, p < .001], and Luminance/contrast attenuation [F(2, 

1772) = 499.7, p < .001] were significant. In accordance with the partitioned older age group 

analysis, Car size and Headlamps were not significant in the overall GLM. 

The pattern of Location's effect was identical to that seen in the partitioned analysis of 

the older participants: detection performance was best at location B (mean d' = 2.84), declined 

some at location A (mean d' = 2.62), and was worst at location C (mean d' = 1.65). Overcast 

scene lighting produced the highest d' values (mean d' = 2.98), followed by backlighting (2.72), 

and front lighting (mean d' = 2.4). Once again, dappled lighting produced substantially worse 

performance (mean d' = 1.65). The lab-based attenuation of contrast and luminance also 

followed the same pattern as above. The highest levels of performance occurred under 
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unattenuated lighting (mean d' = 3.22) and the lowest levels of performance occurred with 

attenuated contrast and luminance (mean d' = 1.67). With regard to target characteristics, white 

cars were more visible than black (mean d' = 2.64 vs. mean d' = 2.35) and closer vehicles were 

more visible than more distant vehicles (mean d' = 3.03 vs. mean d' = 2.05). 

While there was no overall difference between age groups, the Scene lighting X Age 

interaction [F(3, 1772) = 31.3, p < .001] and the Luminance/Contrast attenuation X Age 

interaction [F(2, 1772) = 15.7, p < .001] were significant. The observed d' values for both 

younger and older drivers during back-lit conditions were approximately the same. Again for the 

front-lit conditions, the younger drivers and the older drivers performed similarly. The 

differences were found under the overcast lighting and dappled conditions. The older drivers 

(mean d' = 3.29) were able to detect vehicles better than the younger drivers (mean d' = 2.67) 

during the overcast weather, whereas older drivers were less likely to detect a vehicle correctly 

under dappled lighting (mean d' = 1.31 vs. mean d' = 1.99). 

The Luminance/contrast attenuation X Age interaction emerged in the following manner: 

Natural scene lighting (full luminance and contrast) resulted in lower observed d' values for 

older drivers(mean d' = 3.15) than for the younger drivers (mean d' = 3.3). Both age groups had 

lower detection sensitivity when the luminance and contrast were both attenuated in the lab. The 

older drivers' observed d' (mean d' = 1.87) was higher than the young adults' observed d' (mean 

d' = 1.47) under these manipulated conditions. 

Model Calibration 

As described above, the NAC-VPM computes a target metric from an image and 

associated photometric and neurophysiological data. The detectability metric, d' predicted, is 
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predicted from the target metric and two psychophysical parameters, a and b, using the following 

formula: 

d' predicted = a* ln(TargetMetric) + b (Eq. 1) 

The fit of the model to the observed data is measured by the correlation between the observed d' 

and the logarithm of the target metric. Since there are two estimates of d' for each case, one at 

the "Y" and one at the "Y or?" response levels, a good estimate of d' is the sample mean [13]: 

d' measured = [d'(Y) + d'(Y + ?)] /2 (Eq. 2) 

NAC-VPM is calibrated by fitting a linear regression of the logarithm of the target metric 

against observed d' to estimate the slope and intercept, a and b. The overall quality of the 

calibration is measured by the fit of the regression. The validity of the calibration is also tested 

by examining the shape of the probability distribution of the error between the predicted and 

measured d': ideally the distribution of residuals should be unimodal and Gaussian in shape. 

The calibration data set consisted of 878 cases. There were 899 cases with subject 

response data, but the model could not be run for 21 cases because the image data files or 

associated target regions were corrupted. 

For the 45 and older age group, the correlation of the logarithm of the target metric with 

the observed d' was R = .48 over the entire data set. The calibration regression was highly 

significant [F(1, 876) = 264.22, p < . 001] , while parameter values were a =  0.892 and b = -3. 216. 

Compared to the younger observers, this fit was fairly low. The calibration regression for the 

younger age group was also significant [F(l ,  876) = 982.4, p < .001] , but indicated a relatively 

high correlation (R = .73) between observed and predicted d' values. The parameter values for 

the younger observers were a =  1.228 and b = -5.484. 
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Figure 1 is a histogram of the residuals for the older age group across the range of 

estimated values. A Kolmogorov-Smirnov test was used to analyze the standardized residuals. 

The observed distribution of standardized residuals did not differ from a Gaussian [0, 1] 

distribution (p = .411 ). 

-- Figure 1 here --

While the residuals indicated that the model estimates were not systematically biased, the 

lower value of R, relative to the younger observers' calibration, indicated that the model was not 

adequately accounting for performance. We then examined the validity of the calibration across 

the various experimental factors. The calibration for all but one of the factors, Location, was 

comparable to that of the entire data set. 

As noted previously, location C was selected for its unusual lighting conditions: the road 

at location C was covered by a tree canopy. There was some light coming through the tree 

canopy (i. e. , the dappled lighting effect) which created an artificial "camouflage" pattern by 

superimposing a pattern on the car that was not characteristic of the car and was similar to the 

pattern on the ground. As Figure 2 shows, the model greatly over-estimated the detection ability 

of older observers under dappled lighting. Since this lighting effect was qualitatively different 

than that seen at the other two locations, the older observers' data was partitioned into two 

groups (location C vs. locations A & B). 

-- Figure 2 here --

Location C- Calibration. There were 143 cases at location C. For the 45 and older age 

group, the correlation between predicted and observed d' was much better, with R = . 764. The 

calibration regression was highly significant [F(l ,  876) = 197.91, p < .001] with parameter values 

of a = 1.211 and b = -6.855. By comparison, the calibration regression for the younger age group 
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was also significant [F(l, 141) = 290.45, p < . 001] , and indicated a relatively high correlation (R 

= . 82) between observed and predicted d' values. The parameter values for the younger 

observers were a =  1.382 and b = -7.323. 

Locations A & B - Calibration. There were 733 cases at the location A & B sites. For 

the older observers, the correlation between model predictions and observed performance was 

0.57. The calibration regression was significant [F(l, 733) = 351.43, p < . 001], with parameter 

estimates of a =  0.989 and b = -3.554. The calibration of the model with younger observers' 

data, on the other hand, maintained a correlation comparable with that of the entire data set [F( 1, 

733) = 1025.37, p < .001, R = .764, a =  1.285 and b = -5.692] . The fit of the model to the older 

observers' data once again improved, but not to the extent seen with the calibration of location C. 

DISCUSSION 

The statistical and computational modeling analyses of vehicle detection at an 

intersection complement each other to provide a deeper understanding of performance than that 

which could be provided by either on its own. The statistical modeling demonstrated which 

environmental and vehicle characteristics have an effect on real-world target detection 

performance. Further, we have found that under some circumstances, older drivers are not at a 

deficit in terms of performance, while under other circumstances (e.g. , dappled lighting) 

detection performance suffers disproportionately. Most important is that the modeling approach 

used in concert with knowledge of basic changes in vision with age contributes an understanding 

of the mechanisms of declining task performance, i. e. , the model tells us that older adults 

perform poorer than younger adults in this vehicle detection task due to differences in spatial, 
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temporal, and color/luminance sensitivity. It is important to note here that the model fit the data 

best in the situation which produced the worst task performance in older adults. 

There were no main effects for age in the present experiment. Most other research 

investigating the role of age and vision in driving tasks has found an age main effect. There are 

two main reasons why this might have been the case. First, the older group was limited to 11 

participants, thus the lack of a main effect could have been due to a lack of statistical power and 

less stable estimates of hit and false alarm rates (relative to the younger observers). Secondly, 

the present experiment was limited by a wide age range (from age 45 to 69) in the present data. 

This could also have contributed to relatively unstable estimates of hit and false alarm rates. 

However, a lack of age differences is not without precedence; Guerrier et al. [7] found that age 

was not a good predictor of performance in a driving simulator. 

While the difficulty of location C was predicted due to the artificial camouflage effect, 

the relative difficulty of locations A and B were unexpected. The farm equipment in the 

background of location B was expected to cause higher false alarm rates, and corresponding 

lower d' values, compared to the grassy open area of location A. However, the grassy location 

proved to be more difficult. In retrospect, the farm equipment was fairly easy to ignore, and the 

grass on the shoulder of the road at location A was distracting, perhaps due to wind movement. 

The remainder of the significant statistical main effects were in the expected direction. 

Across the other experimental factors, vehicles which had their headlamps on were no 

more visible than those with headlamps off in the current experiment. The model predictions, 

however, concurred with statistical performance estimates: headlamps contributed only a very 

marginal proportion to the overall target metric. One speculative explanation is that the imagery, 

as projected in the lab, was not an accurate rendering of the illuminance of headlamps under on-
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the-road conditions. The model was calibrated with photometric data taken from the rear­

projection screens, rather than from environmental spectro-photometric readings. Future work is 

required to investigate the effect of headlamps under more realistic viewing conditions. 

Overall the NAC-VPM provided better predictions of performance for the younger 

participants. As mentioned above, the older group had much larger performance variability than 

the younger group. Given these circumstances, the fact that the model fit the data is a testament 

to the model's robustness. However, it is important to note that while the model fit the younger 

data better, the increase in fit achieved by partitioning the data was much more dramatic for the 

older observers: the fit improved considerably for the dappled lighting conditions of location C. 

This is important because location C was the most difficult scenario for both groups, 

disproportionately so for older observers. Thus the model performed best in the area where it can 

do the most good, in terms of contributing to an understanding of the problem and providing 

guidance for the design of effective countermeasures. 

While the partitioned analyses demonstrated that one calibration will not work for every 

condition, it is also evident that one global calibration (which works well for younger drivers) 

will not necessarily work well for all age groups. The parameter differences between age groups 

were notable, thus, trying to predict performance in a population of older drivers with a model 

calibrated for younger drivers is clearly an inadequate approach. 

CONCLUSION 

Overall, the NAC-VPM shows promise as a tool to investigate age-differences in driving­

related visual performance. As the older driving population continues to grow, it will become 

even more important to understand the barriers to their continued mobility and independence. 
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Future work with the NAC-VPM will account for potential variation in decline across the various 

modules of the model: color processing, and spatial and temporal filtering. Future research 

should focus on the role of design countermeasures such as variable intensity brake lights, glass 

treatments, and daytime running lights. With an understanding of age-differences in 

performance, designers can find interventions which will help keep older drivers safely on the 

road. 
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Figure Captions 

Figure 1. Histogram of residuals for older observers over entire data set. Kolmogorov-Smirnov 

test showed that the distribution of residuals was not significantly different from Gaussian [0, 1 ] ,  

p=.411 

Figure 2. Model fits across locations for older observers. 
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